MSE-7: Additive Manufacturing of Soft Magnetic Composites Nicole Benack, Tony Wang

Problem Statement:

Can Additive Manufacturing (AM) methods be used to create functional Soft Magnetic Composites (SMCs)? How will AM methods affect the insulating coating on the iron particles, and will a "next generation" coating outperform current SMCs?

- SMCs (a magnetic core with an insulating coating) are a possible alternative to traditional laminated Si-steels, but AM is needed in order for SMCs to be produced in complex shapes.
- AM powder bed fusion methods used were DMLS and Binder Jet printing.

Approach:

- Electron dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques were used to characterize coating integrity and grain orientation of post-processed rectangular parts.
- Toroids were used to evaluate magnetic properties and mechanical strength.

Results:

Binder Jet Sample DMLS Sample

Element	Weight %	Weight %	Weight %	Weight %	Weight %
	600°F	800°F	1000°F	1200°F	1400°F
0	5.63	4.93	10.76	11.92	15.03
Mg	-	-	0.13	-	-
Si	-	0.1	0.13	0.14	0.13
P	0.13	0.17	0.04	0.04	0.01
S	0.11	0.12	0.13	0.14	
Ca	_		0.1	1.08	
Cr	0.19	0.48	0.91	0.78	0.45
Mn	0.87	0.68	0.87	0.58	0.65
Fe	93.08	93.53	85.99	85.05	83.61
Ni	-		0.75	-	
Br	_		0.19		
Mo	-			0.27	0.13
Total	100	100	100	100	100

- SEM/EBSD: Elongated grain structure due to thermal diffusion in the DMLS sample, and high porosity in the binder jet sample.
- EDS: Phosphorus level dropped between 800 °F and 1,000 °F, as well as diffusion.

Discussion & Conclusions:

- Binder jet printing preserved the particle coating better than DMLS, but DMLS resulted in a higher build density without the need for post-processing.
- Phosphorus coating in a known SMC sample diffused into the iron particles and was completely burned off at sintering temperatures above 800 °F.
- A NiCuZn ferrite coating exhibited a gradual decrease between 600 °F and 1,400 °F but agglomerated during mixing.
- Future work: magnetic testing *via* hysteresis loop and mechanical testing to measure yield strength.

Contact: Dr. Mitra Taheri
Hoeganaes Associate Professor,
Materials Science & Engineering
E-mail: mlt48@drexel.edu

Phone: 215-895-6618

